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The NOX2 NADPH oxidase (NOX2) produces reactive
oxygen species to kill phagosome-confined bacteria.
However, we previously showed that Listeria monocy-
togenes is able to avoid the NOX2 activity in phago-
somes and escape to the cytosol. Thus, despite the
established role of NOX2 limiting L. monocytogenes
infection in mice, the underlying mechanisms of this
antibacterial activity remain unclear. In this article, we
report that NOX2 controls systemic L. monocytogenes
spread through modulation of the type I IFN response,
which is known to be exploited by L. monocytogenes
during infection. NOX2 deficiency results in increased
expression of IFN-stimulated genes in response to type I
IFN and leads to 1) promotion of cell-to-cell spread by
L. monocytogenes, 2) defective leukocyte recruitment to
infection foci, and 3) production of anti-inflammatory
effectors IL-10 and thioredoxin 1. Our findings re-
port a novel antimicrobial role for NOX2 through
modulation of type I IFN responses to control bac-
terial dissemination.  The Journal of Immunology, 2021,
206: 323-328.

he NOX2 NADPH oxidase (NOX2) plays a key role
in modulating immune responses to infection (1, 2).
This multimeric enzyme is composed of both membrane-
bound (gp9127*/p22#**) and cytosolic subunits (p407***/
p47ph”x/p67phox/Rac) (3), which once assembled mediates
the generation of reactive oxygen species (ROS) in the lumen
of phagosomes to directly kill engulfed microorganisms (4).
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NOX2 also regulates other cellular processes relevant to host
defense, including cytoskeleton dynamics, autophagy, and
cytokine/chemokine signaling (5).

Loss of NOX2 activity in humans causes chronic granu-
lomatous disease (CGD), characterized by severe suscepti-
bility to common pathogens such as Staphylococcus aureus and
Aspergillus sp (6). CGD is also characterized by an impaired
control of inflammation. Indeed, the granulomas observed
in CGD are typically sterile but fail to resolve (7). Partial
loss of NOX2 function, involving reduced (but not ablated)
ROS production or mistargeting of the NOX2 enzyme
complex, has also been linked to chronic inflammatory
diseases, including arthritis, lupus, and inflammatory bowel
disease (8-10). However, the mechanisms through which
NOX2 regulates both immunity and inflammatory responses
remain unclear.

Recent studies have linked NOX2 to the regulation of type I
IFN responses, where patients with CGD and NOX2-deficient
mice exhibit an upregulated type I IFN signature (11). This
regulation of type I IFN responses by NOX2 was examined in
the context of viral infection (12). It was reported that RNA
and DNA viruses promote NOX2-derived ROS production,
leading to oxidation of a critical cysteine residue in TLR7,
thereby abrogating antiviral signaling. Pharmacologic inhibi-
tion of NOX2 promoted type I IEN production in mice and
suppressed viral infection. These studies identify NOX2 as a
potential therapeutic target for treating viral infections. How-
ever, the impact of enhanced type I IEN responses on bacterial
infections in situations of deficiency or inhibition of NOX2
remains unclear. This is especially relevant because some in-
tracellular bacterial pathogens, such as Listeria monocytogenes,
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FIGURE 1. NOX2 deficiency leads to enhanced type I IFN responses during L. monocytogenes infection that promote bacterial growth. (A) Experimental design
for L. monocytogenes infection. Livers and spleens were obtained 48 h p.i. and homogenized for mRNA extraction or assessing bacterial load. (B) The mRNA of
Isgl5 in the liver and spleen are shown, data represent mean * SD for three independent experiments with a total of six mice each per group for each experiment.
(C) Liver sections were stained with anti-F4/80, anti-IFITM3, and DAPI. Representative confocal slices of 6 wm are shown. Scale bar, 70 pm. Insets are higher

magnifications of the boxed areas. (D) Mean fluorescence intensity of IFITM3 was quantified across 10 total sections per animal shown in (C), which represent

mean * SD of three independent experiments with a total of six mice per group for each experiment. (E) Bacterial load (CFU per gram of tissue) in livers and
spleens 48 h p.i. Data shown represent mean * SD of three independent experiments with a total of six mice each. The p value was calculated using one-way

ANOVA with Tukey post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001, ***» < 0.0001.

are known to exploit the type I IFN response as part of their
pathogenic strategy (13).

L. monocytogenes is a facultative intracellular pathogen that
can cause listeriosis, a severe systemic disease involving
dissemination to many organs of its host (14). After uptake
by host cells, these bacteria can escape from phagosomes
using the pore-forming toxin listeriolysin O (LLO) and two
phospholipase C enzymes (15). Upon entry to the cytosol,
L. monocytogenes expresses actin assembly-inducing protein
(ActA), a cell surface protein, to initiate actin-based motility
for cell-to-cell spread (16). NOX2 was shown to control
systemic L. monocytogenes infection in mice (17). However,
we reported that LLO disrupts NOX2-mediated ROS
production in phagosomes and that NOX2 does not affect
intracellular growth of wild-type (WT) L. monocytogenes,
suggesting that NOX2-derived ROS restricts L. monocyrogenes
infection by a mechanism other than direct killing in phag-
osomes (18).

The type I IFN response is exploited by L. monocytogenes
(13, 19), affecting many aspects of the immune response against
this intracellular bacterial pathogen (20). Previously, we showed
that type I IFN promotes cell-to-cell spread of L. monocytogenes
by enabling actin-based motility (21). In this article, we tested
the hypothesis that NOX2 controls L. monocytogenes infection
by limiting the type I IFN response.

Materials and Methods

Animals

Cybbf/f, Ifnarl ~/~ and Cybbf/f/lﬁmrl ~/~ mmice (on a C57BL/6 background)
were previously characterized and bred in house at the Hospital for Sick
Children Animal Care Facility. C57BL/6 mice, originally from The Jackson
Laboratory, were also bred in house and used as controls. All experiments
described in this study were carried out in accordance with the Guide for
the Humane Use and Care of Laboratory Animals and were approved by the
Hospital for Sick Children’s Animal Care Committee.

Abs and reagents

Primary Abs are as follows: rabbit anti—L. monocytogenes (223021; BD), rat
anti-F4/80 (ab16911; Abcam), rabbit anti-Thioredoxinl (ab26320; Abcam),
rabbit anti-p-STAT1 (9167; Cell Signaling), rabbit anti-IFN-induced
transmembrane protein 3 (IFITM3) (PA5-11274; Thermo Fisher Scien-
tific), rabbit anti-SOCS3 (2923; Cell Signaling), and anti—B-Actin (A5441;
Sigma-Aldrich). Secondary Abs are as follows: goat anti-rabbit 488 (A11070;
Molecular Probes), goat anti-rat 568 (ab175476; Abcam), and DAPI (no.
D1306; Invitrogen).

Bacterial strains

L. monocytogenes 10403S (WT) and AactA (DP-L3078) were from D. Portnoy,
University of California at Berkeley.

Bone marrow—derived macrophage generation

Bone marrow—derived macrophages (BMDM) were generated from dissected
femurs and tibias as described (21) and used for experiments after 7-9 d.

[mmunaﬂuor@steme

Immunostaining was conducted as described (21). Samples were imaged using
a spinning disc confocal Leica DM16000B inverted microscope, Hamamatsu
ORCA Flash 4 sCMOS camera, and Volocity 6.54 software, using a 10X
objective. Images were imported to Image ] software for analysis and as-
sembled in Adobe Illustrator for labeling.

Infection focus assay

BMDM were seeded onto coverslips in 24-well tissue culture plates at 8 X 10°
cells per well to generate a monolayer. After 18 h, the monolayer was infected
with WT L. monocytogenes at a muldplicity of infection of 0.01 in RPMI
1640. After 1 h postinfection (p.i.), cells were washed three times with PBS,
and RPMI 1640 containing 10% FBS and 50 wg/ml gentamicin (Wisent
311-420-CL) was added to the cultures. At 18 h p.i., cells were fixed with
2.5% PFA for 30 min at 37°C and prepared for fluorescence microscopy.

Mouse infections and tissue preparation

Mice were infected with 5 X 10* WT L. monocytogenes in 200 wl of PBS via
i.v. injection in the lateral tail vein. Mice were euthanized by CO, inhalation
48 h p.i. Liver sections were embedded in OCT compound (Tissue-Tek;
Sakura) and snap frozen at —80°C. Transverse sections of 5 wm were taken
on a cryostat (CM1850; Leica) and mounted onto Superfrost Plus slides.
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FIGURE 2. NOX2 deficiency promotes L. monocytogenes tissue dissemination and cell-to-cell spread in a type I IFN-dependent manner. Indicated mice strains
were infected with 5 X 10% L. monaocytogenes by i.v. tail injection. Livers were obtained 48 h p.i. and then embedded, mounted, and sectioned. (A) Consecutive
liver sections were stained with H&E (upper panel) or DAPI and anti—L. monocytogenes Ab (bottom panels). Representative slices of 6 um are shown. Dashed
lines represent outer limits of infection foci. Scale bar, 70 pm. Ten total sections per organ were assessed to determine (B) foci number, (€) number of infected
cells per focus, and (D) the infection focus area. Data panels represent mean = SD for three independent experiments with a total of six mice per group for each
experiment. The p values were calculated using a one-way ANOVA with Tukey post hoc test. *p < 0.05, ***p < 0.001, ****p < 0.0001. (E-G) BMDM were
generated from the indicated mice strains, and an infection focus assay was performed. Confluent monolayers were infected with a multiplicity of infection of
0.01 of L. monocytogenes for 18 h and then fixed. Cells were stained with DAPI and anti—L. monocytogenes Ab and analyzed by fluorescence microscopy. (E) Representative
images are shown, dashed lines indicate outer limits of infection foci. Scale bar, 70 m. Volocity Software was used to quantify (F) the foci number, (G) the number of
infected cells per focus, and (H) the infection focus area. Data represent mean * SD for three independent experiments. The p values were calculated using one-way

ANOVA with Tukey post hoc test. *p < 0.05, **p < 0.01, **p < 0.001, **p < 0.0001.

Serial sections were collected and stained with H&E prior to immunofluo-
rescence imaging to ensure images were taken at the foci center.

Intracellular growth of L. monocytogenes in BMDM

BMDM were plated at 5 X 10° cells per well in 24-well tissue culture plates,
24 h prior to infection. Intracellular growth of L. monocytogenes was con-
ducted as described (21).

RNA isolation and quantitative PCR

RNA was isolated using the RNeasy kit (74104; QIAGEN), and ¢cDNA was
synthesized using iScript Reverse Transcription Supermix for reverse tran-
scription. Ten nanograms of cDNA per reaction was used for quantitative PCR
using SsoFast EvaGreen Supermix (1708840; Bio-Rad) with Hprt as house-
keeping (22).

ELISA

IFN-B levels were measured in culture supernatants by ELISA (Ref 4200-1;
PBL Assay Science). Bio-Tek System (Gen 5 2.0 Software) was used to read
plates at 450 nm.

Statistical analysis

Statistical analyses were conducted using GraphPad Prism v.6.0 g. The
average = SD is shown in figures, and p values were calculated as described
in figure legends. A p < 0.05 was considered statistically significant.

Results and Discussion
NOX2 deficiency leads to enbhanced type I IFN responses during

L. monocytogenes infection

We examined L. monocytogenes infection of mice using a
systemic model of disease (Fig. 1A). At 48 h p.i., livers and
spleens were processed to assess markers of the type I IFN
response. Using quantitative PCR, we observed that IFN-
stimulated gene 15 (/s¢75) mRNA was significantly upregu-
lated in the liver and spleen of NOX2-deficient (Cybb™ ")
animals compared with WT controls (Fig. 1B). Accordingly,

increased expression of IFITM3 was also observed in the livers
of Cybbf/i mice (Fig. 1C, 1D). Differences in ZsgI5 mRNA or
IFITM3 protein were not observed in mice lacking the type I
IFNR Ifnarl (Ifnarl /7 or in a double-knockout mouse lacking
both NOX2 and the type I IEN receptor (Cybb ™'~/ Ifparl ™).
We conclude that NOX2 deficiency leads to enhanced type I
IFN responses during L. monocytogenes infection.

NOX2 deficiency promotes systemic L. monocytogenes infection in a
type I IFN—dependent manner

Next, we examined the impact of enhanced type I IFN re-
sponses on L. monocytogenes infection. After 48 h p.i., livers
and spleens were harvested to assess bacterial load in these
tissues (Fig. 1E). In NOX2-deficient mice, we observed an
increased bacterial load, consistent with prior studies (17). In
contrast, Ifzarl”"~ mice displayed a reduced L. monocyrogenes
load, as expected (23). Remarkably, the double-knockout
mice showed a significantly reduced bacterial load compared
with NOX2-deficient mice, indicating a protective effect of
Ifnarl deficiency to L. monocytogenes infection even in absence
of the antimicrobial NOX2. These findings suggest that
in vivo, NOX2 deficiency promotes systemic L. monocytogenes
growth in a type I IFN-dependent manner.

NOX2 deficiency promotes L. monocytogenes tissue dissemination in

a type I IFN—dependent manner

To examine bacterial growth during systemic infection, we
processed tissues for H&E staining (Fig. 2A, upper panels)
and immunofluorescence microscopy analysis (Fig. 2A, bot-
tom panels). We found that Cybb~ " mice displayed more
infection foci with respect to control livers (Fig. 2B). The
number of infected cells per focus (Fig. 2C) and the size of
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each infection focus (Fig. 2D) in Cybb_/_ mice was also in-
creased, consistent with prior studies (17). In contrast,
Ifnarl " mice showed a reduced infected cell number as well
as a reduced infection foci size, as expected (21). The in-
creased number of infection foci observed in Cybb™ '~ mice
was also observed in double-knockout animals (Fig. 2A, 2B),
suggesting that NOX2 deficiency has type I IFN-independent
effects on the establishment of infection foci in tissues. The
nature of the NOX2-dependent factors that limit establish-
ment of infection foci in tissues during systemic disease will
be an important subject for future studies. In contrast,
double-knockout tissues displayed a reduction in the size of
infection foci (Fig. 2C), and the number of infected cells per
focus compared with Cybbf/f mice (Fig. 2D). These find-
ings indicate that NOX2 deficiency impacts dissemination of
L. monocytogenes within tissues in a type I IFN-dependent
manner.

NOX2 deficiency promotes L. monocytogenes cell-to-cell spread in
macrophages in a type I [FN—dependent manner

Direct cell-to-cell spread of L. monocytogenes in tissues is
thought to be a major factor impacting the size of infection
foci observed in tissues and overall bacterial growth (24).
Indeed, L. monocytogenes mutants lacking actA are severely at-
tenuated for virulence in mice (25). Previously, we showed that
type I IFN promotes cell-to-cell spread by L. monocytogenes
(21). Therefore, we examined cell-to-cell spread of L. mono-
cytogenes in BMDM from our knockout mice. We performed
an infection focus assay, whereby BMDM were infected with a
low multiplicity of infection of L. monocytogenes, and bacterial
spread from cell-to-cell was examined after 18 h (Fig. 2E). We

IFNB (h) - 4 8

TRX1 |

ACHN | T e e s ce s w——
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o
m
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observed that in Cybb~’"~ BMDM, L. monocytogenes spread
was significantly increased, as measured by the number of
infected cells per focus (Fig. 2F) and infection focus area
(Fig. 2G). L. monocyrogenes spread in [ﬁmrli/i BMDM was
significantly reduced, as expected (21). However, the double-
knockout BMDM displayed a significantly reduced L. mon-
ocytogenes spread with respect to Cybb~'~ BMDM (Fig. 2F,
2G). Importandly, intracellular growth of L. monocyrogenes
in BMDM was not affected by loss of Cybb and/or Ifnarl
(Supplemental Fig. 1). It is noteworthy that we assessed in-
tracellular growth of a AactA mutant of L. monocytogenes to
avoid the confounding effect of cell-to-cell spread (Fig. 2E).
We conclude that NOX2 deficiency promotes L. monocytogenes
cell-to-cell spread in BMDM in a type I IFN-dependent

manner.

NOX2 deficiency impairs leukocyte recruitment to L. monocytogenes
infection foci

We considered other mechanisms by which NOX2 deficiency
could impact L. monocytogenes infection. First, we looked at
leukocyte migration to infection sites because NOX2 is
required for expression of CCR1 and CCR2 (26). Using the
marker F4/80, we observed a reduced number of recruited
leukocytes to infection foci in Cybb™~ '~ mice (Supplemental
Fig. 2A, 2B) (27). In contrast, leukocyte recruitment was
enhanced in lﬁlzzrl_/_ mice, as expected (28). Leukocyte re-
cruitment was restored to levels comparable to WT in the
double-knockout animals but notably did not recapitulate the
phenotype of Ifizarl™"~ mice. We conclude that loss of type I
IFN signaling can overcome the leukocyte recruitment defect
seen in NOX2-deficient mice.
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NOX2 deficiency upregulates anti-inflammatory effectors in a type I
IFN-dependent manner

We also examined the impact of NOX2 deficiency on anti-
inflammatory mediator production during L. monocytogenes
infection. First, we examined IL-10, which is known to
modulate L. monocyrogenes infection (29). It is noteworthy
that IL-10 is upregulated in CGD (30) and autoimmune
diseases, such as systemic lupus erythematous (31). We
observed significantly increased /L-7/0 mRNA in the livers
of Cybb™"" mice (Supplemental Fig. 3A). IL-10 has been
implicated in the anti-inflammatory response mediated by
type I IFN (32). Consistent with this, we observed de-
creased JL-10 mRNA in Ifnarl”’" mice. However, the
double-knockout mice showed significantly reduced /L-10
mRNA with respect to Cybb '~ mice. We also examined
thioredoxin 1 (TRX1), an oxidative stress-limiting protein
associated with the anti-inflammatory signaling linked to
IL-10 (33). Similar expression profiles were observed for both
mRNA expression (Supplemental Fig. 3B) and protein ex-
pression of TRX1 (Supplemental Fig. 3C, 3D). Thus, NOX2
deficiency promotes the production of anti-inflammatory ef-
fectors in a type I IFN—dependent manner.

NOX2 deficiency leads to enbanced IFN-stimulated gene expression in
response to type I IFN

We examined the impact of NOX2 on type I IEN responses
in vitro using BMDM. Secretion of IFN-$ in response to
L. monocytogenes infection was not affected in cells from Cybb™"~
mice compared with WT control cells (Supplemental Fig.
4A). Similarly, the response to type I IFN treatment (in the
absence of infection) was unaffected, as measured by phos-
phorylation of STAT1 (Supplemental Fig. 4B). However, we
observed enhanced expression of several IFN-stimulated genes
(ISGs) (TRX1, IFITM3, and SOCS3) in NOX2-deficient
BMDM (Fig. 3). Thus, our findings indicate that NOX2
acts downstream of STAT1 to limit ISG expression in re-
sponse to type I IFN.

NOX2 plays an important role in immunity by deliv-
ering ROS to phagosome-confined bacteria (1). However,
the immunomodulatory role of NOX2 in mediating resistance
to intracellular bacterial pathogens is unclear. In this article, we
show that the previously observed increase in susceptibility of
NOX2-deficient (Cybbilf) mice to L. monocytogenes infection
(17) is due to an augmented type I IFN response in these an-
imals. Dissemination of bacteria within the tissues of Cybb '~
animals is enhanced, with both increased numbers and size of
infection foci. Although intracellular growth of L. mono-
cytogenes in the cytosol of macrophages is known to be
unaffected by NOX2 deficiency (18), we find that cell-to-
cell spread by L. monocytogenes is enhanced in NOX2-deficient
macrophages in a type I IFN-dependent manner. In
summary, our findings reveal a novel antimicrobial role for
NOX2 through immunomodulation that suppresses bac-
terial dissemination.
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